Introduction of Nanobiomaterials
Preface
Acknowledgments
About the Authors
Chapter 1: Fundamentals of Nanobiomaterials
1.1 Definition and Classification of Nanobiomaterials
1.1.1 What are Nanobiomaterials?
1.1.2 Scope and Importance
1.1.3 Classification Systems
1.2 Historical Development
1.2.1 Evolution of Nanoscience
1.2.2 Milestones in Nanobiomaterial Development
1.2.3 Current State of the Field
1.3 Size-Dependent Properties
1.3.1 Quantum Effects
1.3.2 Surface Area to Volume Ratio
1.3.3 Physical Properties at Nanoscale
1.4 Key Characteristics and Parameters
1.4.1 Surface Properties
1.4.2 Mechanical Properties
1.4.3 Electrical Properties
1.4.4 Optical Properties
1.5 Basic Principles of Nanoscale Interactions
1.5.1 Surface Forces
1.5.2 Biological Interfaces
1.5.3 Molecular Recognition
Chapter 2: Dimensional Classification of Nanobiomaterials
2.1 Zero-Dimensional (0D) Nanobiomaterials
2.1.1 Quantum Dots
2.1.1.1 Synthesis Methods
2.1.1.2 Properties
2.1.1.3 Applications
2.1.2 Nanoparticles
2.1.2.1 Metallic Nanoparticles
2.1.2.2 Polymer Nanoparticles
2.1.2.3 Ceramic Nanoparticles
2.1.3 Fullerenes
2.1.3.1 Structure and Properties
2.1.3.2 Functionalization
2.1.3.3 Applications
2.2 One-Dimensional (1D) Nanobiomaterials
2.2.1 Nanofibers
2.2.1.1 Electrospun Fibers
2.2.1.2 Self-assembled Fibers
2.2.2 Nanotubes
2.2.2.1 Carbon Nanotubes
2.2.2.2 Inorganic Nanotubes
2.2.3 Nanowires
2.2.3.1 Metallic Nanowires
2.2.3.2 Semiconductor Nanowires
2.3 Two-Dimensional (2D) Nanobiomaterials
2.3.1 Graphene
2.3.1.1 Production Methods
2.3.1.2 Properties
2.3.1.3 Functionalization
2.3.2 Nanofilms
2.3.2.1 Layer-by-Layer Assembly
2.3.2.2 Surface Modification
2.3.3 Nanosheets
2.3.3.1 Synthesis Methods
2.3.3.2 Applications
2.4 Three-Dimensional (3D) Nanobiomaterials
2.4.1 Nanocomposites
2.4.1.1 Polymer-based Composites
2.4.1.2 Ceramic-based Composites
2.4.1.3 Metal-based Composites
2.4.2 Nanoporous Materials
2.4.2.1 Synthesis Methods
2.4.2.2 Characterization
2.4.3 Hierarchical Structures
2.4.3.1 Design Principles
2.4.3.2 Fabrication Methods
2.5 Higher-Dimensional Systems (4D-7D)
2.5.1 4D: Time-Responsive Materials
2.5.1.1 Stimuli-Responsive Systems
2.5.1.2 Applications
2.5.2 5D: Smart/Adaptive Materials
2.5.2.1 Design Principles
2.5.2.2 Applications
2.5.3 6D: Self-Healing Materials
2.5.3.1 Mechanisms
2.5.3.2 Applications
2.5.4 7D: Self-Evolving Materials
2.5.4.1 Principles
2.5.4.2 Future Prospects
Chapter 3: Synthesis and Fabrication Methods
3.1 Top-Down Approaches
3.1.1 Lithography Techniques
3.1.2 Mechanical Milling
3.1.3 Etching Methods
3.2 Bottom-Up Approaches
3.2.1 Chemical Synthesis
3.2.2 Self-Assembly
3.2.3 Template-Directed Synthesis
3.3 Green Synthesis Methods
3.3.1 Biological Routes
3.3.2 Sustainable Processes
3.3.3 Environmental Considerations
3.4 Surface Modification Techniques
3.4.1 Chemical Modification
3.4.2 Physical Modification
3.4.3 Biological Functionalization
3.5 Characterization Methods
3.5.1 Physical Characterization
3.5.2 Chemical Characterization
3.5.3 Biological Characterization
Chapter 4: Types of Nanobiomaterials
4.1 Organic Nanobiomaterials
4.1.1 Natural Polymers
4.1.2 Synthetic Polymers
4.1.3 Lipid-based Materials
4.2 Inorganic Nanobiomaterials
4.2.1 Metallic Nanostructures
4.2.2 Ceramic Nanomaterials
4.2.3 Semiconductor Materials
4.3 Hybrid Nanobiomaterials
4.3.1 Organic-Inorganic Hybrids
4.3.2 Bio-synthetic Hybrids
4.3.3 Composite Systems
4.4 Biocompatible Polymeric Nanostructures
4.4.1 Natural Polymers
4.4.2 Synthetic Polymers
4.4.3 Hybrid Systems
4.5 Carbon-based Nanobiomaterials
4.5.1 Graphene and Derivatives
4.5.2 Carbon Nanotubes
4.5.3 Fullerenes
Chapter 5: Characterization Techniques
5.1 Microscopy Techniques
5.1.1 Electron Microscopy
5.1.2 Scanning Probe Microscopy
5.1.3 Optical Microscopy
5.2 Spectroscopic Methods
5.2.1 Optical Spectroscopy
5.2.2 Vibrational Spectroscopy
5.2.3 X-ray Techniques
5.3 Surface Analysis
5.3.1 Chemical Analysis
5.3.2 Physical Analysis
5.3.3 Topographical Analysis
5.4 Physical Property Measurements
5.4.1 Mechanical Properties
5.4.2 Electrical Properties
5.4.3 Thermal Properties
5.5 In Vitro Characterization Methods
5.5.1 Cell Culture Studies
5.5.2 Protein Interaction Studies
5.5.3 Enzymatic Studies
Chapter 6: Biocompatibility and Safety
6.1 Cellular Interactions
6.1.1 Cell Uptake Mechanisms
6.1.2 Intracellular Trafficking
6.1.3 Cell Response
6.2 Immune Response
6.2.1 Immunogenicity
6.2.2 Inflammation
6.2.3 Immune Modulation
6.3 Toxicology Studies
6.3.1 In Vitro Studies
6.3.2 In Vivo Studies
6.3.3 Long-term Effects
6.4 Biodegradation
6.4.1 Mechanisms
6.4.2 Kinetics
6.4.3 Degradation Products
6.5 Regulatory Considerations
6.5.1 Safety Guidelines
6.5.2 Testing Requirements
6.5.3 Approval Processes
Chapter 7: Applications in Medicine
7.1 Drug Delivery Systems
7.1.1 Targeted Delivery
7.1.2 Controlled Release
7.1.3 Smart Delivery Systems
7.2 Tissue Engineering
7.2.1 Scaffold Design
7.2.2 Cell-Material Interactions
7.2.3 Tissue Regeneration
7.3 Diagnostic Imaging
7.3.1 Contrast Agents
7.3.2 Molecular Imaging
7.3.3 Multimodal Imaging
7.4 Cancer Therapy
7.4.1 Targeted Therapy
7.4.2 Photothermal Therapy
7.4.3 Combination Therapy
7.5 Regenerative Medicine
7.5.1 Stem Cell Technology
7.5.2 Wound Healing
7.5.3 Organ Regeneration
Chapter 8: Applications in Biotechnology
8.1 Biosensors
8.1.1 Types and Design
8.1.2 Detection Mechanisms
8.1.3 Applications
8.2 Bioimaging
8.2.1 Fluorescent Probes
8.2.2 Magnetic Probes
8.2.3 Multimodal Imaging
8.3 Cell Culture and Tissue Engineering
8.3.1 Surface Modification
8.3.2 3D Culture Systems
8.3.3 Tissue Models
8.4 Gene Delivery
8.4.1 Vectors
8.4.2 Targeting Strategies
8.4.3 Expression Control
8.5 Enzyme Immobilization
8.5.1 Methods
8.5.2 Applications
8.5.3 Performance Analysis
Chapter 9: Environmental Applications
9.1 Water Treatment
9.1.1 Filtration Systems
9.1.2 Pollutant Removal
9.1.3 Disinfection
9.2 Air Purification
9.2.1 Filtration
9.2.2 Catalytic Systems
9.2.3 Sensing Applications
9.3 Soil Remediation
9.3.1 Contaminant Removal
9.3.2 Soil Enhancement
9.3.3 Monitoring Systems
9.4 Sustainable Energy Applications
9.4.1 Solar Energy
9.4.2 Fuel Cells
9.4.3 Energy Storage
9.5 Environmental Monitoring
9.5.1 Sensors
9.5.2 Detection Systems
9.5.3 Data Analysis
Chapter 10: Commercial Aspects
10.1 Scale-up Considerations
10.1.1 Process Development
10.1.2 Quality Control
10.1.3 Cost Optimization
10.2 Cost Analysis
10.2.1 Production Costs
10.2.2 Market Analysis
10.2.3 Economic Viability
10.3 Market Overview
10.3.1 Current Market Status
10.3.2 Growth Potential
10.3.3 Market Segments
10.4 Patent Landscape
10.4.1 IP Protection
10.4.2 Patent Analysis
10.4.3 Licensing
10.5 Future Trends
10.5.1 Emerging Markets
10.5.2 Technology Trends
10.5.3 Market Predictions
Chapter 11: Future Perspectives
11.1 Emerging Applications
11.1.1 New Medical Applications
11.1.2 Industrial Applications
11.1.3 Consumer Products
11.2 Technological Challenges
11.2.1 Production Challenges
11.2.2 Performance Limitations
11.2.3 Safety Concerns
11.3 Research Directions
11.3.1 New Materials
11.3.2 Advanced Applications
11.3.3 Improved Methods
11.4 Ethical Considerations
11.4.1 Safety Issues
11.4.2 Environmental Impact
11.4.3 Social Implications
11.5 Societal Impact
11.5.1 Healthcare Impact
11.5.2 Environmental Impact
11.5.3 Economic Impact
Appendices
A. Characterization Methods
B. Safety Guidelines
C. Regulatory Standards
D. Calculation Methods
E. Case Studies
Glossary
References
Index